
1

2

JNI isn’t difficult to use…

…and it doesn’t have to be complicated!

But it can be a very powerful and useful

tool…

…when used correctly

3

Contents

• What is it and what can it do?

• When should or shouldn’t you use it?

• Basic JNI application overview

• The 4-steps to JNI application happiness

• Some JNI specifics

– Naming and typing

– Some helper functionality

• Calling Java code from native code

4

But wait, there’s more!

• Demos

• Further reading

2

5

What is JNI?

• Standard part of Java

• Allows you to integrate native code

(written in, say, C) into Java applications

• Can also be used to embed a JVM into a

native application

• Provides a standard means of interaction

between Java code and native code

6

So what can JNI do?

• Execute native code from within Java

– Call native methods

• Execute Java code from within native code

– Catch & throw exceptions

– Call methods

– Use objects

• Embed the JVM in native application (via

the Invocation API)

7

Why use JNI?

• Direct hardware access / support

• Reuse existing libraries

• Time-critical code / operations

• Better support for something in another

language…

8

Why not use JNI?

• “The system absolutely has to be written in

Java!”

• Using a platform-dependant library makes

your application (more) platform-

dependant

• Codebase becomes more complicated

– More opportunity for memory leaks, etc.

3

9

Theoretical complexity…

10

Real-world Complexity…

11

A basic JNI application

• JNI provides the link between the application

and some native code

• Also allows the native code to access the JVM

(and thus the application)

12

Creating a JNI application

1. Decide what functionality needs to be in

native code

2. Write & compile Java wrapper class

3. Create native (C / C++) header using

javah

4. Import header into new DLL and

populate functions

4

13

1. Design

• Try to keep native code to a minimum

• Avoid passing platform-dependant stuff (if

possible)

• Clearly divided functionality (one function

per action)

• Might need several native libraries

14

2. Create Java wrapper class

• Normal Java class, plus:

– native methods

– static block that loads the native library via

a call to System.loadLibrary

• Native methods have no implementation

(like abstract methods)

• Compile class as normal

15

3. Generate native header

• Use javah, which comes with the JDK:

javah –jni <wrapper class name>

for example,

javah –jni MyPkg.MyWrapper

• Note package name (if used) must be

specified!

• This produces <wrapper class name>.h

16

4. Write native code

• Import header

• Each native method in the wrapper class

should have a munged equivalent

• Implement the functions

– The JNIEnv object can be used to access

various helpful bits of the JNI

– Other parameters are converted to “C” types

5

17

4a. Native compiler setup

• Need to add JNI headers to include path:

– <java install>\include AND

– <java install>\include\<platform>

• For example:

– C:\jdk1.5.0_15\include

– C:\jdk1.5.0_15\include\win32

18

Demo

19

JNI name munging

• Native function name is created from:

– The prefix Java_

– Mangled fully-qualified class name

– A separator (“_”)

– Mangled method name

– For overloaded native methods, two
underscores followed by the mangled
argument signature

• May overload non-native methods

20

The JNI Environment object

• JNIEnv object used to access JNI
functionality

• Passed as first two parameters to all
native functions

• Examples of use:

– Retrieving array elements

– Getting strings

– Accessing Invocation API

• See chapters 4 and 5 of spec

6

21

Playing ‘hunt the library’

• The argument passed to
System.loadLibrary is converted to
platform naming convention, for example:

– MyLib.dll for Win32

– libMyLib.so for Solaris

• The library must be somewhere the JVM
can find it

– System search path

– Usually in the same directory as the
application

22

String operations

• Java uses UTF – need to convert strings
– GetStringUTFChars

– MUST ReleaseStringUTFChars

• Can also create new java.lang.Strings,

get region encoding, etc.

• Any created object (or other allocated

memory) must be freed when you’re done

with it!

23

String helper functions

24

Array operations

• Primitive arrays vs. Object arrays

• Primitives:
– GetXXXArrayRegion

– GetXXXArrayElements,
ReleaseXXXArrayElements

• Objects:
– NewObjectArray

– Get / SetObjectArrayElement

– FindClass

7

25

Type signatures

• Uses JVM type signature representation

• Single letters for primitive types, or fully

qualified class names

• (arg-types) ret-type for a method

e.g. long foo (int n, String s)

gives (ILjava/lang/String;)J

26

Calling Java code from JNI

• Create Java wrapper class and native
header as above

• Native code needs to know class, method
name, and method signature of Java code
it wants to call

• JNIEnv->GetMethodID and
JNIEnv->CallXXXMethod

• JNIEnv->GetStaticMethodID and
JNIEnv->CallStaticXXXMethod

27

Accessing fields of objects

• Basically the same as calling Java

methods:

GetFieldID()

GetXXXField() and SetXXXField()

• Need an instantiated class, field name and

signature

• Can’t be used to get length of array – use
GetArrayLength()

28

Demo

8

29

Gotchas

• Package name when creating native

headers

• Memory leaks when working with strings

• Multiple instances of the same library

• System.load vs System.loadLibrary

30

Recommended reading

• JNI Specification (Java 5):
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html

• Sun JNI tutorial:
http://java.sun.com/docs/books/tutorial/information/download.html

• Java Native Interface: Programmer’s
Guide and Specification:
http://java.sun.com/docs/books/jni/index.html

31

